The Best
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

The Bestدخول
●● إعلانـات ●●
إعلانك هنا إعلانك هنا إعلانك هنا
إعـلانـات المنتـدى

إحصائيات المنتدى
أفضل الاعضاء هذا الشهر
آخر المشاركات
أفضل الاعضاء هذا الشهر
361 المساهمات
268 المساهمات
190 المساهمات
102 المساهمات
86 المساهمات
78 المساهمات
65 المساهمات
51 المساهمات
27 المساهمات
24 المساهمات
آخر المشاركات




×
النص



لون شفاف

الألوان الافتراضية
×
الخلفية



لون شفاف

الألوان الافتراضية
×
النص



لون شفاف

الألوان الافتراضية
×
الخلفية



لون شفاف

الألوان الافتراضية

description امتحان بكالوريا تجريبي 3ع ت Empty امتحان بكالوريا تجريبي 3ع ت

more_horiz
امتحان بكالوريا (تجريبي) التعليم الثاتوي « دورة جوان 2008 »
الشعبة : علوم تجريبية المدة : 03 ساعات
اختبار في مادة الرياضيات

التمرين الأول : (06نقط)
عين العدد الحقيقي x الذي يحقق:
>
(1+xi)2= -3+4i
حل في c
> المعادلة:
Z2+(7-4i)Z +9-15i=0
وليكنZ2 ، Z1 حليها حيث: |Z2| > |Z1|
>
بين أن: 3(Z2 +3i) -4Z1=0 ثم استنتج أن العددين: Z2+3i ، Z1 لهما نفس العمدة.
>
أكتب على شكله الأسي كلا من العددين: 3(Z2+3i) ، 4Z1
تأكد أن العدد Z12008
>
حقيقي.
عين قيم n الصحيحة التي من أجلها يكون: (Z1)n تخيليا صرفا.
>


التمرين الثاني : (03نقط)
خزان بدون غطاء، قاعدته مربعة الشكل وسعته 32لتر،يراد تغطية المساحة الداخلية للخزان بغطاء من الرصاص.
أوجد أبعاد الخزان مع الاقتصاد في كمية الرصاص إلى الحد الأقصى.

التمرين الثالث : (05نقط)
نعتبر الدالة المعرفة على R بـ:
f(x)= (1/2) cos2x-cosx
وليكن C تمثيلها البياني في معلم متعامد (O ;i ;j ).
1) أ- برهن أن الدالة f دورية ذات الدور .2π
ب- برهن أن محور التراتيب هو محور للمنحنى C.
2) أ- عينf′ الدالة المشتقة للدالة f.
ب- بين أنه من أجل كل عدد حقيقي x، [1-2cos(x) ]f′(x)=sin(x)
ج- أدرس إشارة f ′(x) من أجل كل xمن المجال [π0; ]
3) أ- أنجز جدول تغيرات للدالة f على [π0; ].
ب- أرسم المنحني الذي يمثل الدالة f على[π ;π-].
ج- كيف يمكن استنتاج المنحني C.

التمرين الرابع (05نقط)
1/ إختيار من متعدد:
f هي الدالة المعرفة على ]∞+،0[
حيث: - - F(x) = دالة أصلية لها .
دالة أصلية أخرى G للدالة f على ]∞+،0[ معرفة بـ:

أ) G(x) = . ب) G(x) = ج) + G(x) =
2/ صحيح أم خاطئ
حدد إن كانت العبارات التالية صحيحة أو خاطئة (برر الأجوبة).
لتكن f الدالة المعرفة على R بـ:f(x)= xe-x
1- من أجل كل x من R: f(x)f(-x)≤0
2- من أجل كل x من R: f′(x)+f(x)=e-x
3- من أجل كل x من R: f(x)≤e-1
4- ∞ lim f′(x)=- ، ∞ f(x)=+ lim
5- الدالة f تقبل قيمة حدية عظمى عند x=1
6- الدالة f هي حل للمعادلة التفاضلية y′=-y













انتهى الصفحة 2/2 بالتوفيق
الجمهورية الجزائرية الديمقراطية الشعبية
امتحان بكالوريا (تجريبي) التعليم الثاتوي « دورة جوان 2008 »
الشعبة : علوم تجريبية المدة : 03 ساعات
اختبار في مادة الرياضيات

التمرين الأول :
أصحيح أم خاطئ مع تبرير الأجوبة :
1/ f الدالة العددية المعرفة كما يلي :
إن المنحنى الممثل لها محصور بين المستقيمين : y =-1 ^ y = 1
2/ لا يمكن أن يكون المنحنى المقابل ممثل لدالة أصلية للدالة
f(x)=x ex²-1
3/ المعادلة : 2 e 2x +3 ex – 5 = 0 تقبل حلين في R
4/ الدالة g حيث : فردية على R

5/ lim(x+1) ex = +∞ lim (x+1)e-x+1 = 0

التمرين الثاني:
1/ حل في C المعادلة : z3-(1+i)z2-2(1+i)z+8=0 علما أنها تقبل حلا حقيقيا z0
نرمز بـ z1 و z2 للحلين الآخرين حيث |z1|<|z2|
احسب
>
2/

عين العدد الطبيعي n لكي يكون z1n
>
є R-*
3/ في المستوي المنسوب إلى معلم متعامد و منجانس نعتبر النقاط A، B ، C ذات اللواحق على الترتيب z0 ، z1 ، z2
عين لاحقة G مركز ثقل المثلث ABC
>

> عين مجموعة النقط M(z) بحيث MA²+MB²+MC²= k مع k من R (ناقش)

التمرين الثالث:
يسقط جسم سقوطا حرا في الفراغ فيقطع : 16mخلال الثانية الأولى ، 48m خلال الثانية الثانية ، 80m خلال الثانية الثالثة و هكذا
1/ ما هو عدد الأمتار التي سيقطعها هذا الجسم خلال الثانية الـ 15 ؟
2/ احسب المسافة الكلية المقطوعة بعد الثانية الـ 20 ؟
3/ ما هو الوقت اللازم حتى يقطع هذا الجسم مسافة كلية قدرها 2304m


الصفحة 1/2 أقلب الورقة
التمرين الرابع:
الجزء الأول
نعرف الدالة f بعبارتها التالية :
1/ عين مجموعة تعريف الدالة f
2/ احسب : limf(x)

3/ ادرس شفعية الدالة ثم استنتج : limf(x)

4/ ادرس قابلية الاشتقاق للدالة f عند : x1 = 2 x0= -2 و فسر هندسيا .
5/ ادرس اتجاه تغير الدالة ثم شكل جدول تغيراتها .
6/ عين نقاط تقاطع المنحنى مع المستقيم y=x
7/ انشئ بعناية المنحنى الممثل للدالة f
8/ ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد حلول كل معادلة :
f(x)= mx
> f(x)= x+m > f(x) = m >

الجزء الثاني
لتكن M(x,y) نقطة متحركة من المستوي احداثيتيها معرفتين بدلالة الزمن t
x= 2sin t
حيث π/2 ≤ t ≤ π/6


1/ ما هو مسار النقطة M
2/ عين احداثيي كلا من شعاع السرعة V و شعاع التسارع γ ثم استنتج طبيعة الحركة












انتهى الصفحة 2/2 بالتوفيق

الجمهورية الجزائرية الديمقراطية الشعبية
بكالوريا التعليم الثاتوي « دورة جوان 2008 »
الشعبة : علوم تجريبية تمارين للدعم : استعد للبكالوريا
الأعداد المركبة
التمرين 01
تذكر : 1/z حقيقي يعني : z = z
>
2/ من أجل كل عدد مركب z يكون : z z =| z|2
a و b عددان مركبان حيث :
=1 |a| = |b| و ab ≠ -1
نضع : عبر عن z بدلالة a و b و استنتج أن z حقيقي .


التمرين 02
سجل : من أجل كل عدد حقيقي α يكون : sin2α = 2 sinα
>
cosα
]
p,pليكن
α عدد مركب من المجال [-
نعتبر العدد المركب z = 2 sin²α + i sin2α، عين حسب قيم α الكتابة الأسية للعدد z
التمرين 03
ليكن α عدد مركب طويلته r وعمدة له θ . نعتبر في c المعادلة : z²-α(α+i) z +iα3=0
1/ انشر (α – i)² ثم حل المعادلة المعطاة 2 / اكتب كلا من الحلين على شكله الأسي .
3/ حدد r و θ حتى يكون الحلان مترافقين .
التمرين 04
z عدد مركب غير معدوم . ينسب المستوي إلى م م م
عين طبيعة مجموعة النقط M ذات اللاحقة z في كل حالة : 1/ |z- /4 =
pi|= 2 /
التمرين 05
1/ حل في c المعادلة : z²+z+1 =0 ثم استنتج حلول المعادلة z3-1=0

2/ نضع :


• احسب u² ، u3 و u2008
• عين قيم العدد الطبيعي n التي يكون من أجلها un حقيقيا .
• احسب : s = u+u²+ u3+……..+ u2008
3/ A ، B و C نقط من المستوي المنسوب إلى م م م لواحقها على الترتيب : a=1 ، b= و u

• عين لاحقة النقطة G مرجح الجملة المثقلة (A ,2) ، (B,1) و (C,-1)
• عين طبيعة مجموعة النقط M التي تحقق : -2MA²-MB²+MC² =1
التمرين 06
نعتبر في c المعادلة : z3-iz2+(1-i)z+2i-2 =0
1/ حل المعادلة علما أنها تقبل حلا تخيليا صرفا z0
z1 و z2 الحلان الآخران حيث Re(z2) < Re(z1)
2/ A ، B و C نقط من المستوي لواحقها على الترتيب : z0 ، z1 و z2
* احسب |z1-z0|، |z1-z0|

* اكتب على شكله الأسي ثم استنتج طبيعة المثلث ABC .



التمرين 07
نعتبر في c كثير الحدود : f(z)= z4-4z3+14z2-36z+45
1/ احسب f(3i)
2/ قارن بين f(z) و f( z ) و استنتج جذرا آخر لكثير الحدود f(z)
3/ حل في c المعادلة f(z)=0

الدوال الأسية
التمرين 01
أصحيح أم خطأ مبررا دلك.
/3) ،
p+2q ، ei(q1/ النقط A ، B و C ذات اللواحق ei /3) على الترتيب تعين مثلثا متقايس الأضلاعp-2q
ei(
2/ الدوال : f(x)= ke(x/2) -1
¢حيث
k من R هي حلول للمعادلة التفاضلية : y=2y
3/ المعادلة : e-x-x-2=0 تقبل حلا واحدا في R
4/ الدالة
)x+1/2 - F(x)=( 1/4 دالة أصلية للدالة : f(x) =

5/ lim =0

description امتحان بكالوريا تجريبي 3ع ت Emptyرد: امتحان بكالوريا تجريبي 3ع ت

more_horiz
شكرا جزيلا

description امتحان بكالوريا تجريبي 3ع ت Emptyرد: امتحان بكالوريا تجريبي 3ع ت

more_horiz
مشكـــورة على المرور

description امتحان بكالوريا تجريبي 3ع ت Emptyرد: امتحان بكالوريا تجريبي 3ع ت

more_horiz
شكـــــــــرا

description امتحان بكالوريا تجريبي 3ع ت Emptyرد: امتحان بكالوريا تجريبي 3ع ت

more_horiz
شكرًا لك على الموضوع

 امتحان بكالوريا تجريبي 3ع ت 866468155
 KonuEtiketleri عنوان الموضوع
امتحان بكالوريا تجريبي 3ع ت
 Konu BBCode BBCode
privacy_tip صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى
remove_circleمواضيع مماثلة